Abstract

Polyolefins, including polyethylene (PE) and polypropylene (PP), represent more than half of commercial polymers produced in the world. They are known to be cost-effective and good performing materials used in a broad range of commodity applications that influence our everyday lives. On the other hand, less attention has been paid to their specialty applications, commonly requiring the material to have multiple performance functions. The limitations and shortcomings of polyolefins have stemmed from lack of functionality and structure diversity, which are compounded with the long-standing challenges in the chemical modification (functionalization) of polyolefins. In the past two decades, in conjunction with advances in metallocene catalysis, a new method based on the “reactive” polyolefin approach has emerged, which affords a new class of functional polyolefins with high molecular weight and well-controlled molecular structures that have functional groups located at chain ends, side chains, and block/graft...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.