Abstract

Studying the functional hemodynamic roles of individual cerebral cortical arterioles in maintaining both the structure and function of cortical regions during and after brain stroke in small animals is an important issue. Recently, functional photoacoustic microscopy (fPAM) has been proved as a reliable imaging technique to probe the total hemoglobin concentration (HbT), cerebral blood volume (CBV) and hemoglobin oxygen saturation (SO<sub>2</sub>) in single cerebral blood vessels of rats. Here, we report the application of fPAM associated with electrophysiology recordings to investigating functional hemodynamic changes in single cortical arterioles of rats with electrical forepaw stimulation after photo-induced ischemic stroke. Because of the weak optical focusing nature of our fPAM system, photo-induced ischemic stroke targeting single cortical arterioles can be easily conducted with simple adaptation. Functional HbT, CBV and SO<sub>2</sub> changes associated with the induced stroke in selected arterioles from the anterior cerebral artery system were imaged with 36 x 65-&mu;m spatial resolution. Experimental results showed that after photo-occlusion of a single arteriole, the functional changes of nearby arterioles in cerebral cortex only can be observed immediately after the stroke. After a few minutes of stroke onset, there are no significant functional changes under the forepaw stimulation, suggesting that alternate blood flow routes are not actively recruited. The fPAM with electrophysiology recordings complements existing imaging techniques and has the potential to offer a favorable tool for explicitly studying cerebral hemodynamics in small animal models of photo-indcued ischemic stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.