Abstract

A coexpression strategy in Saccharomyces cerevisiae using episomal and integrative vectors for the Escherichia coli heat-labile enterotoxin B subunit (LTB) and a fusion protein of an ApxIIA toxin epitope produced by Actinobacillus pleuropneumoniae coupled to LTB, respectively, was adapted for the hetero-oligomerization of LTB and the LTB fusion construct. Enzyme-linked immunosorbent assay (ELISA) with GM1 ganglioside indicated that the LTB fusion construct, along with LTB, was oligomerized to make the functional heteropentameric form, which can bind to receptors on the mucosal epithelium. The antigen-specific antibody titer of mice orally administered antigen was increased when using recombinant yeast coexpressing the pentameric form instead of recombinant yeast expressing either the LTB fusion form or antigen alone. Better protection against challenge infection with A. pleuropneumoniae was also observed for coexpression in recombinant yeast compared with others. The present study clearly indicated that the coexpression strategy enabled the LTB fusion construct to participate in the pentameric formation, resulting in an improved induction of systemic and mucosal immune responses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.