Abstract

A new organogelator based on a salicylideneaniline derivative with cholesterol moieties was synthesized, and it was proposed that it could gelate various organic solvents, such as 1-butanol, 1-octanol, butyl acetate, tetrachloromethane, benzene, toluene through combination with a gelation test. From the results of analysis by UV/Vis absorption, circular dichroism (CD), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies and semiempirical (AM1) calculations, we believed that the gelator molecules could self-assemble into left-handed helical nanofibers through unimolecular layer packing, which further twisted into the thicker fibers and constructed 3D networks in the gel phase. Interestingly, the organogel exhibited strong fluorescence enhancement relative to a solution of the same concentration because of the formation of J aggregations. Meanwhile, photochromism of the organogel could take place under UV-light irradiation. Both strong fluorescence emission and photochromism properties were concurrent in one system based on a salicylideneaniline derivative. It was suggested that the self-assembly of the functional organogelator could lead to unique photophysical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.