Abstract

The ascending projections of the cochlear nucleus (CN) and the sources of descending inputs to the CN were investigated in horseshoe bats (Rhinolophus rouxi) by tracing the anterograde and retrograde transport of horseradish peroxidase (HRP or WGA-HRP) injected into the CN. The tracer was iontophoretically deposited into physiologically characterized regions of the cochlear nucleus (Feng and Vater, '85). We report the course and termination of pathways arising from the anteroventral (AVCN), posteroventral (PVCN), and dorsal (DCN) cochlear nucleus. The projection fields within the auditory brainstem centers (superior olivary complex [SOC]; lateral lemniscus complex [LLC]; and inferior colliculus [IC]) and their tonotopic organization according to the frequency representations at the injection sites are described. While the projection pattern is generally in accordance with other mammals, several species-characteristic features are noted: i) the lateral superior olive (LSO) receives tonotopically organized input from both the AVCN and PVCN; ii) the CN-projections to medial nuclear groups of the SOC located between the LSO and the medial nucleus of the trapezoid body do not support previously suggested homologies; iii) the ventral nucleus of the LLC can be subdivided into two divisions with distinct input patterns from the AVCN and PVCN, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call