Abstract

Whereas major insights into the neuronal basis of adaptive behavior have been gained from the study of automatic behaviors, including reflexive and rhythmic motor acts, the neural substrates for goal-directed behaviors in which decision-making about action selection and initiation are crucial, remain poorly understood. However, the mollusk Aplysia is proving to be increasingly relevant to redressing this issue. The functional properties of the central circuits that govern this animal’s goal-directed feeding behavior and particularly the neural processes underlying the selection and initiation of specific feeding actions are becoming understood. In addition to relying on the intrinsic operation of central networks, goal-directed behaviors depend on external sensory inputs that through associative learning are able to shape decision-making strategies. Here, we will review recent findings on the functional design of the central network that generates Aplysia’s feeding-related movements and the sensory-derived plasticity that through learning can modify the selection and initiation of appropriate action. The animal’s feeding behavior and the implications of decision-making will be briefly described. The functional design of the underlying buccal network will then be used to illustrate how cellular diversity and the coordination of neuronal burst activity provide substrates for decision-making. The contribution of specific synaptic and neuronal membrane properties within the buccal circuit will also be discussed in terms of their role in motor pattern selection and initiation. The ability of learning to “rigidify” these synaptic and cellular properties so as to regularize network operation and lead to the expression of stereotyped rhythmic behavior will then be described. Finally, these aspects will be drawn into a conceptual framework of how Aplysia’s goal-directed circuitry compares to the central pattern generating networks for invertebrate rhythmic behaviors.

Highlights

  • In a relatively constant environment, animals can express variable motor actions as a consequence of internal drives arising from the dynamic properties of central networks

  • The decision to act implies that the underlying central network possesses the structural and functional mechanisms that autonomously enable the selection of a particular action pattern from several variants and the “setting of the occasion” for its expression (Schall, 2005)

  • The data summarized in this review indicate that the simpler and more accessible invertebrate central nervous system (CNS) is endowed with neuronal correlates of elementary decision-making processes, including the selection and initiation of specific behavioral acts, which are amenable to cellular analysis

Read more

Summary

INTRODUCTION

In a relatively constant environment, animals can express variable motor actions as a consequence of internal drives arising from the dynamic properties of central networks. Most of our current knowledge on the ability of the central nervous system (CNS) to spontaneously generate patterned motor activity has derived from the analysis of rhythmic and essentially stereotyped behaviors, such as locomotion and respiration From these studies, a number of rhythmogenic networks, so-called “central pattern generators” (CPGs), have been identified and the synaptic and intrinsic membrane properties of their constituent neurons defined (for reviews, see Calabrese, 1995; Marder and Bucher, 2001, 2007; Nusbaum and Beenhakker, 2002; Marder et al, 2005; Harris-Warrick, 2010). The ongoing operation of such automatic CPGs can be www.frontiersin.org

Nargeot and Simmers
CONCLUSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.