Abstract

Sign language (SL) conveys linguistic information using gestures instead of sounds. Here, we apply a meta‐analytic estimation approach to neuroimaging studies (N = 23; subjects = 316) and ask whether SL comprehension in deaf signers relies on the same primarily left‐hemispheric cortical network implicated in spoken and written language (SWL) comprehension in hearing speakers. We show that: (a) SL recruits bilateral fronto‐temporo‐occipital regions with strong left‐lateralization in the posterior inferior frontal gyrus known as Broca's area, mirroring functional asymmetries observed for SWL. (b) Within this SL network, Broca's area constitutes a hub which attributes abstract linguistic information to gestures. (c) SL‐specific voxels in Broca's area are also crucially involved in SWL, as confirmed by meta‐analytic connectivity modeling using an independent large‐scale neuroimaging database. This strongly suggests that the human brain evolved a lateralized language network with a supramodal hub in Broca's area which computes linguistic information independent of speech.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.