Abstract

This paper proposes a new intelligence paradigm scheme to forecast that emphasizes on numerous software development elements based on functional networks forecasting framework. The most common methods for estimating software development efforts that have been proposed in literature are: line of code (LOC)-based constructive cost model (COCOMO), function point (FP) based on neural networks, regression, and case-based reasoning (CBR). Unfortunately, such forecasting models have numerous of drawbacks, namely, their inability to deal with uncertainties and imprecision present in software projects early in the development life-cycle. The main benefit of this study is to utilize both function points and development environments of recent software development cases prominent, which have high impact on the success of software development projects. Both implementation and learning process are briefly proposed. We investigate the efficiency of the new framework for predicting the software development efforts using both simulation and COCOMO real-life databases. Prediction accuracy of the functional networks framework is evaluated and compared with the commonly used regression and neural networks-based models. The results show that the new intelligence paradigm predicts the required efforts of the initial stage of software development with reliable performance and outperforms both regression and neural networks-based models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.