Abstract

The ability of an individual to reduce the intensity, duration or frequency of a stressor is a critical determinant of the consequences of that stressor on physiology and behavior. To expand our understanding of the brain networks engaged during controllable and uncontrollable stress and to identify sex differences, we used functional connectivity analyses of the immediate early gene product Fos in male and female rats exposed to either controllable or uncontrollable tail shocks. Twenty-eight regions of interest (ROI) were selected from the structures previously evinced to be responsible for stress response, action-outcome learning, or sexual dimorphism. We found that connectivity across these structures was strongest in female rats without control while weaker connectivity was evident in male rats with control over stress. Interestingly, this pattern correlates with known behavioral sex differences where stressor controllability leads to resilience in male but not female rats. Graph theoretical analysis identified several structures important to networks under specific conditions. In sum, the findings suggest that control over stress reshapes functional connectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.