Abstract

With the rapid rise in our knowledge about the structural and functional properties of hippocampal microcircuits, it has become possible to closely integrate experimental findings with large-scale, anatomically and biophysically realistic computational simulations of control and epileptic neuronal networks with unprecedented precision and predictive power. We are developing full-scale realistic network models of the control and injured temporal lobe in order to investigate fundamental questions related to normal hippocampal microcircuit function and the mechanistic bases of epilepsy. I review the conceptual framework and biological basis of model development and show specific applications, including new computational and experimental results concerning the phase-related firing of various interneuronal subtypes during learning and memory-related hippocampal network oscillations and the roles of aberrant hyper-connected hub-like neurons in seizures. The talk will highlight the unprecedented predictive and analytic power of increasingly user-friendly, freely shared, highly realistic, large-scale computational models in understanding normal circuit function and temporal lobe epilepsy.

Highlights

  • Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution

  • We are developing full-scale realistic network models of the control and injured temporal lobe in order to investigate fundamental questions related to normal hippocampal microcircuit function and the mechanistic bases of epilepsy

  • Research which is freely available for redistribution

Read more

Summary

Introduction

Functional network connectivity of the control and epileptic hippocampus From Twentieth Annual Computational Neuroscience Meeting: CNS*2011 Stockholm, Sweden.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.