Abstract
Abstract This work reviews results of research aimed at design and characterization of mixed ionic–electronic conducting perovskite–fluorite nanocomposite oxide ceramics. Nanocrystalline oxides were prepared via Pechini route, nanocomposites – via ultrasonic dispersion of their mixture in organic solvents with addition of surfactants. Genesis of the real structure of nanocomposites at sintering by conventional as well as advanced (microwave or e-beam treatment) techniques was studied in details by structural methods. Applied preparation procedures ensured nano-sizes of perovskite/fluorite domains even in dense ceramics and a high spatial uniformity of their distribution. Redistribution of elements between perovskite and fluorite domains without formation of new phases was revealed. Characterization of nanocomposite transport properties by oxygen isotope heteroexchange and conductivity or weight relaxation demonstrated that perovskite–fluorite interfaces are paths for fast oxygen diffusion. Best perovskite–fluorite combinations tested as cathode layers or dense oxygen separation layers in asymmetric supported membranes demonstrated performance promising for the practical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.