Abstract
The Runt domain family of transcription factors play key roles in transcriptional regulation of definitive hematopoiesis and osteogenesis. This transcription factor family is characterized by a DNA-binding α-subunit harboring the Runt domain and a secondary subunit, β, which binds to the Runt domain and enhances its interaction with DNA. Missense mutations in the Runt domain from either the blood or bone-related gene product are associated with the onset of acute human leukemia as well as a disease of skeletal patterning known as cleidocranial dysplasia. NMR “footprinting” analysis of Runt domain/β/DNA ternary complexes in solution previously identified the likely residues that form the heterodimerization and DNA-binding surfaces of the Runt domain. Functional mutagenesis at 37 positions in the Runt domain or β confirms the original identification of these interaction surfaces and reveals that the heterodimerization and DNA-binding surfaces of the Runt domain occur at distinct, non-overlapping sites within the domain. The analysis of an additional 21 disease-related missense mutations identified from patients with either blood or bone disease demonstrates that the primary defect in these patients is a failure in DNA-recognition by the Runt domain. The molecular basis for the DNA-binding defect is analyzed in the context of the three-dimensional structure of the Runt domain in binary and ternary protein/DNA complexes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.