Abstract
In this paper, we present a framework for functional MR image restoration based on the Hidden Markov Tree (HMT) model. Under this scheme, the wavelet/contourlet coefficients of the distorted image are filtered using the HMT model of the baseline image to minimise the statistical divergence between two images. An iterative algorithm between image registration and HMT filtering is developed to achieve a trade-off between the least mean square error (in the spatial domain) and the minimum statistical divergence (in the spectral domain). We demonstrate that the proposed method can eliminate the motion artefacts (such as spikes and burring) in the Functional MR Imaging data more effectively, leading to reliable neural activity detection. This method can also be used for image restoration in other medical imaging applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Biology and Drug Design
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.