Abstract

BackgroundApart from biomechanical alterations in movement patterns, it is known that movement limitations in persons with knee osteoarthritis (PwKOA) are related to an individual’s perception and belief regarding pain and disability. To gain more insights into the functional movement behaviour of PwKOA in a clinical setting, inertial sensor technology can be applied. This study first aims to evaluate the ability of inertial sensors to discriminate between healthy controls (HC) and PwKOA. Secondly, this study aims to determine the relationship between movement behaviour, pain-related factors and disability scores.MethodsTwelve HC and 19 PwKOA were included. Five repetitions of six functional movement tasks (walking, forward lunge, sideward lunge, ascent and descent stairs, single leg squat and sit-to-stand) were simultaneously recorded by the inertial sensor system and a camera-based motion analysis system. Statistically significant differences in angular waveforms of the trunk, pelvis and lower limb joints between HC and PwKOA were determined using one-dimensional statistical parametric mapping (SPM1D). The Knee injury and Osteoarthritis Outcome Score and TAMPA scale for Kinesiophobia were used to evaluate the relationship between discriminating joint motion, pain-related factors and disability using spearman’s correlation coefficients.ResultsPwKOA had significantly less trunk rotation, internal pelvis rotation and knee flexion ROM during walking. Additionally, the reduced knee flexion (i.e. at the end of the stance phase and swing phase) was related to increased level of perceived pain. During the sideward lunge, PwKOA had significantly less knee flexion, ankle plantarflexion and hip abduction. This decreased hip abduction (i.e. during stance) was related to higher fear of movement. Finally, PwKOA had significantly less knee flexion during the forward lunge, single leg squat and during ascent and descent stairs. No significant correlations were observed with disability.ConclusionsInertial sensors were able to discriminate between movement characteristics of PwKOA and HC. Additionally, significant relationships were found between joint motion, perceived pain and fear of movement. Since inertial sensors can be used outside the laboratory setting, these results are promising as they indicate the ability to evaluate movement deviations. Further research is required to enable measurements of small movement deviations in clinically relevant tasks.

Highlights

  • Knee osteoarthritis (KOA) is a common degenerative disease and one of the leading causes of disability in elderly persons [1]

  • Inertial sensors were able to discriminate between movement characteristics of persons with knee osteoarthritis (PwKOA) and healthy controls (HC)

  • Significant relationships were found between joint motion, perceived pain and fear of movement

Read more

Summary

Introduction

Knee osteoarthritis (KOA) is a common degenerative disease and one of the leading causes of disability in elderly persons [1]. 60 years, 10% of the males and 18% of the females show symptoms of KOA, including muscle weakness, reduced range of motion (ROM), loss of proprioception and altered joint loading [2]. Together, these factors lead to a reduced joint function, which results in the development of pain, functional limitations and loss of mobility [3]. Pain intensity, functioning and disability are typically evaluated by patient reported outcome measures (PROMs) These self-reported measures are disease-specific, convenient to use and easy to incorporate in clinical practice to monitor treatment effects [4]. This study aims to determine the relationship between movement behaviour, pain-related factors and disability scores

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call