Abstract

Complex brain circuitry with feedforward and feedback systems regulates neuronal activity, enabling neural networks to process and drive the entire spectrum of cognitive, behavioral, sensory, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits is underpinned by hundreds of synaptic adhesion molecules that span synaptic junctions. Dysfunction of a single molecule or molecular interaction at synapses can lead to disrupted circuit activity and brain disorders. Neuroligins, a family of cell adhesion molecules, were first identified as postsynaptic-binding partners of presynaptic neurexins and are essential for synapse specification and maturation. Here, we review recent advances in our understanding of how this family of adhesion molecules controls neuronal circuit assembly by acting in a synapse-specific manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.