Abstract

Understanding how ecology shapes the evolution of morphological traits is a major goal in organismal biology. By quantifying force of motion, hypotheses on the function of fundamental tasks of animals like feeding can be tested. Ray-finned fishes use various feeding strategies, classified into three main feeding modes: suction, ram and manipulation. While manipulation feeders are usually distinct in morphology and feeding behavior, differentiation between suction and ram feeders is often fine-scaled and transitional. Previous studies have identified different feeding modes and biomechanical adaptations on interspecific and intersexual levels in lake-dwelling sailfin silversides, species of a Sulawesi freshwater radiation. Functional feeding morphology of stream-dwelling species remained in contrast unstudied. We hypothesized that different requirements of riverine habitats favor the evolution of alternative functional adaptations in stream-dwelling sailfin silversides. To test this hypothesis, we investigated feeding of two phenotypically distinct riverine species, Telmatherina bonti and Marosatherina ladigesi, and their sexes, by high-speed videos and biomechanical models. The kinematic approaches identify T. bonti as ram feeder and M. ladigesi as suction feeder. Surprisingly, the biomechanical models of the jaw apparatus provide contradicting results: only one out of three studied parameters varies between both species. Contrarily to lake-dwelling Telmatherina, sexes of both species do not differ in feeding biomechanics. We conclude that T. bonti predominantly uses ram feeding while M. ladigesi primarily uses suction feeding as its main hunting strategy. Feeding biomechanics of stream-dwelling sailfin silversides are less distinct compared to lake-dwelling species, likely due to different trophic ecologies or less stable ecological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.