Abstract

The black carp, Mylopharyngodon piceus (Osteichthyes: Cyprinidae), crushes its snail and other molluscan prey with robust pharyngeal jaws and strong bite forces. Using gross morphology, histological sectioning, and X-ray reconstruction of moving morphology (XROMM), we investigated structural, behavioral, and mechanical aspects of pharyngeal jaw function in black carp. Strut-like trabeculae in their pharyngeal jaws support large, molariform teeth. The teeth occlude with a hypertrophied basioccipital process that is also reinforced with stout trabeculae. A keratinous chewing pad is firmly connected to the basioccipital process by a series of small bony projections from the base of the pedestal. The pharyngeal jaws have no bony articulations with the skull, and their position is controlled by five paired muscles and one unpaired median muscle. Black carp can crush large molluscs, so we used XROMM to compare pharyngeal jaw postures as fish crushed ceramic tubes of increasing sizes. We found that black carp increase pharyngeal jaw gape primarily by ventral translation of the jaws, with ventral rotation and lateral flaring of the jaws also increasing the space available to accommodate large prey items. A stout, robust ligament connects left and right jaws together firmly, but allows some rotation of the jaws relative to each other. Contrasting with the pharyngeal jaw mechanism of durophagous perciforms with fused left and right lower pharyngeal jaws, we hypothesize that this ligamentous connection may serve to decouple tensile and compressive forces, with the tensile forces borne by the ligament and the compressive forces transferred to the prey.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call