Abstract

The objective of this study was to evaluate the effects of common functional polymorphisms in genes involved in dopamine metabolism on striatal dopamine turnover in de novo Parkinson's disease (PD). This was an observer-blinded cohort study investigating effects of common functional polymorphisms in dopa decarboxylase (DDC, rs921451), monoamine oxidase B (MAOB; rs1799836), catechol-O-methyltransferase (COMT, rs4680), and dopamine transporter/solute carrier family 6 member 3 (DAT/SLC6A3, variable number tandem repeats) genes on 18 F-fluorodopa uptake and an effective distribution volume ratio (inverse of dopamine turnover) measured by 18 F-fluorodopa PET in 28 untreated PD patients. Patients carrying the MAOBCC/(C)/CT genotype (low/intermediate enzyme activity) had a lower dopamine turnover in the putamen (higher mean effective distribution volume ratio) when compared with patients with MAOBTT/(T) genotype (high enzyme activity). Striatal PET measures were not different between variants in the remaining genes. The MAOB (rs1799836) polymorphism predicts putaminal dopamine turnover in early PD with the MAOBTT allele linked to high enzyme activity leading to higher intrinsic dopamine turnover, which has been demonstrated to constitute a risk factor for motor complications. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.