Abstract

Pluripotent embryonic stem cells represent a promising renewable cell source to generate a variety of differentiated cell types including hepatocyte lineage cells, and may ultimately be incorporated into extracorporeal bioartificial liver devices and cell replacement therapies. Recently, we and others have utilized sodium butyrate to directly differentiate hepatocyte-like cells from murine embryonic stem cells cultured in a monolayer configuration. However, to incorporate stem cell technology into clinical and pharmaceutical applications, and hopefully increase the therapeutic potential of these differentiated cells for liver disease treatment, a major challenge remains in sustaining differentiated functions for an extended period of time in their secondary culture environment. In the present work, we have investigated the use of polyacrylamide hydrogels with defined mechanical compliances as a cell culture platform for improving and/or stabilizing functions of these hepatocyte-like cells. Several functional assays, e.g., urea secretion, intracellular albumin content, and albumin secretion, were performed to characterize hepatic functions of cells on polyacrylamide gels with stiffnesses of 5, 46.6, and 230 kPa. In conjunction with the mechanical and cell morphological characterization, we showed that hepatic functions of sodium butyrate differentiated cells were sustained and further enhanced on compliant substrates. This study promises to offer insights into regulating stem cell differentiation via mechanical stimuli, and assist us with designing a variety of dynamic culture systems for applications in tissue and cellular engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.