Abstract

The reduction of NO to N2O by flavodiiron nitric oxide reductases (FNORs) is related to the disruption of the defense mechanism in mammals against invading pathogens. The proposed mechanism for this catalytic reaction involves both nonheme mono- and dinitrosyl diiron(II) species as the key intermediates. Recently, we reported an initial account for NO reduction activity of an unprecedented mononitrosyl diiron(II) complex, [Fe2(N-Et-HPTB)(NO)(DMF)3](BF4)3 (1) (N-Et-HPTB is the anion of N,N,N',N'-tetrakis(2-(l-ethylbenzimidazolyl))-2-hydroxy-1,3-diaminopropane; DMF = dimethylformamide) with [FeII{FeNO}7] formulation [Jana et al. J. Am. Chem. Soc. 2017, 139, 14380]. Here we report the full account for the selective synthesis, characterization, and reactivity of FNOR model complexes, which include a dinitrosyl diiron(II) complex, [Fe2(N-Et-HPTB)(NO)2(DMF)2](BF4)3 (2) with [{FeNO}7]2 formulation and a related, mixed-valent diiron(II, III) complex, [Fe2(N-Et-HPTB)(OH)(DMF)3](BF4)3 (3). Importantly, whereas complex 2 is able to produce 89% of N2O via a semireduced mechanism (1 equiv of CoCp2 per dimer = 50% of NO reduced), complex 1, under the same conditions (0.5 equiv of CoCp2 per dimer = 50% of NO reduced), generates only ∼50% of N2O. The mononitrosyl complex therefore requires superreduction for quantitative N2O generation, which constitutes an interesting dichotomy between 1 and 2. Reaction products obtained after N2O generation by 2 using 1 and 2 equiv of reductant were characterized by molecular structure determination and electron paramagnetic resonance spectroscopy. Despite several available literature reports on N2O generation by diiron complexes, this is the first case where the end products from these reactions could be characterized unambiguously, which clarifies a number of tantalizing observations about the nature of these products in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call