Abstract

Charge carriers that have been driven out of thermal equilibrium by their excessive vibrational energies are termed hot carriers. A theory has been developed to model the injection of these vibrationally excited electrons by explicitly accounting for the time-dependent thermal relaxation of the electron-transfer driving vibrational mode, as ascertained using functional mode analysis. Specifically, the thermal relaxation rate of the driving mode is first determined through the so-called frozen-phonon approach after which the energy-dependent line shape function is revisited to include memory effects for the vibrational quanta within the framework of Fermi’s golden rule. As shown by the numerical simulations of a 6-methyl-azulene-2-carboxylic acid dye molecule bound to an anatase TiO2[101] surface, our new theory not only yields persistently faster electron injection rates with higher incident photon energy but also exhibits a sharp increase when the vibrational quanta of the photoexcited dye molecule chang...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.