Abstract

Surface plasmon polaritons carrying orbital angular momentum are of great fundamental and applied interest. However, common approaches for their generation are restricted to having a weak dependence on the properties of the plasmon-generating illumination, providing a limited degree of control over the amount of delivered orbital angular momentum. Here we experimentally show that by tailoring local and global geometries of vortex generators, a change in helicity of light imposes arbitrary large switching in the delivered plasmonic angular momentum. Using time-resolved photoemission electron microscopy we demonstrate pristine control over the generation and rotation direction of high-order plasmonic vortices. We generalize our approach to create complex topological fields and exemplify it by studying and controlling a "bright vortex", exhibiting the breakdown of a high-order vortex into a mosaic of unity-order vortices while maintaining the overall angular momentum density. Our results provide tools for plasmonic manipulation and could be utilized in lab-on-a-chip devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.