Abstract

Synergistic therapy involving two or more therapeutic agents with different anticancer mechanisms represents a promising approach to eradicate chemotherapy-refractory cancers. However, the preparation of a synergistic therapy platform generally involves complicated procedures to encapsulate different therapeutic agents and thereby increases the purification difficulty. In this work, we reported a simple but robust strategy to prepare a highly controllable drug delivery system (DDS) for synergistic cancer therapy. To construct this robust DDS, mesoporous silica nanoparticles (MSNs) were employed as a nanoplatform to encapsulate anticancer drug doxorubicin (DOX). After using a tumor-targeting cellular membrane-penetrating peptide (TCPP) and a mitochondria-targeting therapeutic peptide (TPP) to seal the surface pores via disulfide bonds, these newly developed MSNs can target cancer cells, penetrate cell membrane and rapidly release anticancer drug and mitochondria-targeted peptide in cytoplasm, inducing a remarkable synergistic anticancer effect. The new design concept reported here will promote the development of targeted and smart DDSs for synergistic cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.