Abstract
A novel strategy was proposed for the fabrication of high‐performance acidic mesoporous poly ionic liquids catalyst. In this work, mesoporous poly ionic liquids (MPILs) were synthesized with P123 (PEO20PPO70PEO20) served as pore‐forming agent. Then, MPILs were treated with PW3− anion exchange, thereby fabricating PW/MPIL‐S(x). MPIL and PW/MPIL‐S(x) were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), Thermogravimetric analysis (TA), N2 adsorption–desorption and Fourier transform infrared (FT‐IR) spectra and X‐ray photoelectron spectroscopy (XPS) spectra. The effect of solvent and concentration of P123 on the morphology and mesoporous structure of MPILs were investigated systematically. And the results show that MPILs were featured with mesoporous channel structure, high surface area (up to 737 m2/g) and large pore volumes (1.16 cm3/g), which benefit heterogeneous phase reaction (such as, alkylation of styrene with o‐xylene). In the alkylation reaction, under optimal reaction conditions, the catalyst PW/MPIL‐THF (4.0 g) shows high conversion of styrene (100%) and PXE yield (96.21%), demonstrating the excellent catalytic activities. Furthermore, PW/MPIL‐S(x) are easy to be separated from the catalytic system by filtration and show no obvious decrease in catalytic activity after 6 cycle runs. The obtained PW/MPIL‐S(x) catalyst exhibit high thermal and mechanical stability as well, indicating extensive application in high temperature acidic catalysis. This work might open up a new method for the synthesizing of porous polymer catalysts in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.