Abstract

Proliferation and differentiation of mammalian central nervous system progenitor cells involve concertedly controlled transcriptional and alternative splicing modulations. Searching for the developmental implications of this programming, we manipulated specific acetylcholinesterase (AChE) splice variants in the embryonic mouse brain. In wild type mice, 'synaptic' AChE-S appeared in migrating neurons, whereas the C-terminus cleaved off the stress-induced AChE-R variant associated with migratory radial glial fibers. Antisense suppression of AChE-R reduced neuronal migration, allowing increased proliferation of progenitor cells. In contrast, transgenic overexpression of AChE-R was ineffective, whereas transgenic excess of enzymatically active AChE-S or inactive AChE-Sin suppressed progenitors proliferation alone or both proliferation and neuronal migration, respectively. Our findings attribute to alternative splicing events an interactive major role in neocortical development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.