Abstract

For the first time, we demonstrate here functional magnetic resonance imaging (fMRI) using intermolecular multiple-quantum coherences (iMQCs). iMQCs are normally not observed in liquid-state NMR because dipolar interactions between spins average to zero. If the magnetic isotropy of the sample is broken through the use of magnetic field gradients, dipolar couplings can reappear, and hence iMQCs can be observed. Conventional (BOLD) fMRI measures susceptibility variations averaged over each voxel. In the experiment performed here, the sensitivity of iMQCs to frequency variations over mesoscopic and well-defined distances is exploited. We show that iMQC contrast is qualitatively and quantitatively different from BOLD contrast in a visual stimulation task. While the number of activated pixels is smaller in iMQC contrast, the intensity change in some pixels exceeds that of BOLD contrast severalfold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.