Abstract

Odontocete cetaceans exhibit genomic mutations in key ketogenesis genes. In order to validate an inferred lack of ketogenesis made by observations from genome sequencing, we biochemically analyzed tissues from several odontocete cetacean species and demonstrate that they indeed do not exhibit appreciable hepatic β-hydroxybutyrate (βHB) or its carnitine ester. Furthermore, liver tissue exhibited significantly lower long chain acylcarnitines and increased odd chain acylcarnitines indicative of a decreased reliance on hepatic long chain fatty acid oxidation in these carnivorous mammals. Finally, we performed single molecule, real-time next generation sequencing of liver and brain RNA of Tursiops truncatus and demonstrate that the succinyl-CoA transferase required for acetoacetate catabolism is expressed in the nervous system. These data show that odontocete cetaceans have lost the ability to perform ketogenesis and suggest a hepatocentric coenzyme A recycling function rather than a predominantly systemic-bioenergetic role for ketogenesis in other ketogenic competent mammals such as humans.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.