Abstract

ABSTRACTFunctional logistic regression is becoming more popular as there are many situations where we are interested in the relation between functional covariates (as input) and a binary response (as output). Several approaches have been advocated, and this paper goes into detail about three of them: dimension reduction via functional principal component analysis, penalized functional regression, and wavelet expansions in combination with Least Absolute Shrinking and Selection Operator penalization. We discuss the performance of the three methods on simulated data and also apply the methods to data regarding lameness detection for horses. Emphasis is on classification performance, but we also discuss estimation of the unknown parameter function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.