Abstract

Severe performance drop and fire risk due to the uneven lithium (Li) dendrite formation and growth during charge/discharge process has been considered as the major obstacle to the practical application of Li metal batteries. So inhibiting dendrite growth and producing a stable and robust solid electrolyte interface (SEI) layer are essential to enable the use of Li metal anodes. In this work, a functional lithiophilic polymer composed of chitosan (CTS), polyethylene oxide (PEO), and poly(triethylene glycol dimethacrylate) (PTEGDMA), was homogeneously deposited on a commercial Celgard separator by combining electrospraying and polymer photopolymerization techniques. The lithiophilic environment offered by the CTS-PEO-PTEGDMA layer enables uniform Li deposition and facilitates the formation of a robust homogeneous SEI layer, thus prevent the formation and growth of Li dendrites. As a result, both Li/Li symmetric cells and LiFePO4/Li full cells deliver significantly enhanced electrochemical performance and cycle life. Even after 1000 cycles, the specific capacity of the modified full cell could be maintained at 65.8 mAh g−1, twice which of the unmodified cell (32.8 mAh g−1). The long-term cycling stability in Li/Li symmetric cells, dendrite-free anodes in SEM images and XPS analysis suggest that the pulverization of the Li anode was effectively suppressed by the lithiophilic polymer layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call