Abstract

Background Disabled-2 (Dab2) is a platelet protein that is functionally involved in thrombin signaling in mice. It is unknown whether or not Dab2 undergoes phosphorylation during human platelet activation. Objectives To investigate the phosphorylation status of Dab2 and its functional consequences in thrombin-stimulated human platelets. Methods Dab2 was immunoprecipitated from resting and thrombin-stimulated platelet lysates for differential isotopic labeling. After enrichment of the phosphopeptides, the phosphorylation sites were analyzed by mass spectrometry. The corresponding phospho-specific antibody was generated. The protein kinases responsible for and the functional significance of Dab2 phosphorylation were defined by the use of signaling pathway inhibitors/activators, protein kinase assays, and various molecular approaches. Results Dab2 was phosphorylated at Ser227, Ser394, Ser401 and Ser723 in thrombin-stimulated platelets, with Ser723 phosphorylation being the most significantly increased by thrombin. Dab2 was phosphorylated by protein kinase C at Ser723 in a Gαq -dependent manner. ADP released from the stimulated platelets further activated the Gβγ -dependent pathway to sustain Ser723 phosphorylation. The Cbl-interacting protein of 85 kDa (CIN85) bound to Dab2 at a motif adjacent to Ser723 in resting platelets. The consequence of Ser723 phosphorylation was the dissociation of CIN85 from the Dab2-CIN85 complex. These molecular events led to increases in fibrinogen binding and platelet aggregation in thrombin-stimulated platelets by regulating αIIb β3 activation and ADP release. Conclusions Dab2 Ser723 phosphorylation is a key molecular event in thrombin-stimulated inside-out signaling and platelet activation, contributing to a new function of Dab2 in thrombin signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.