Abstract

Many practical noises emanating from rotating machines with blades generate a mixture of tonal and the chaotic noise. The tonal component is related to the rotational speed of the machine and the chaotic component is related to the interaction of the blades with air. An active noise controller (ANC) with either linear algorithm like filtered-X least mean square (FXLMS) or nonlinear control algorithm like functional link artificial neural network (FLANN) or Volterra filtered-X LMS (VFXLMS) algorithm shows sub-optimal performance when the complete noise is used as reference signal to a single controller. However, if the tonal and the chaotic noise components are separated and separately sent to individual controller with tonal to a linear controller and chaotic to a nonlinear controller, the noise canceling performance is improved. This type of controller is termed as hybrid controller. In this paper, the separation of tonal and the chaotic signal is done by an adaptive waveform synthesis method and the antinoise of tonal component is produced by another waveform synthesizer. The adaptively separated chaotic signal is fed to a nonlinear controller using FLANN or Volterra filter to generate the antinoise of the chaotic part of the noise. Since chaotic noise is a nonlinear deterministic noise, the proposed hybrid algorithm with FLANN based controller shows better performance compared to the recently proposed linear hybrid controller. A number of computer simulation results with single and multitone frequencies and different types of chaotic noise such as logistic and Henon map are presented in the paper. The proposed FLANN based hybrid algorithm was shown to be performing the best among many previously proposed algorithms for all these noise cases including recorded noise signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.