Abstract
The techniques used by Doeblin and Chung to obtain ordinary limit laws (central limit laws, weak and strong laws of large numbers, and laws of the iterated logarithm) for Markov chains, are extended to obtain analogous functional limit laws for stochastic processes which have embedded processes satisfying these laws. More generally, it is shown how functional limit laws of a stochastic process are related to those of a process embedded in it. The results herein unify and extend many existing limit laws for Markov, semi-Markov, queueing, regenerative, semi-stationary, and subordinated processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.