Abstract

The exercise pressor reflex arises from contracting muscle and is manifested by increases in arterial pressure, heart rate, and cardiac contractility. In patients with peripheral artery disease, the exercise pressor reflex is exaggerated. This effect is believed to be caused by a metabolite whose concentration is increased when the working muscles are inadequately perfused. Previous work in rats with simulated peripheral artery disease has shown that pharmacological blockade of acid-sensing ion channel 3 (ASIC3), which is found on group III and IV afferents, prevented the exaggeration of the exercise pressor reflex. Blockade of ASIC3, however, may have off-target effects that preclude a conclusion that ASIC3 plays a role in evoking the reflex in rats with simulated peripheral artery disease. In the present experiments performed in decerebrated rats with simulated peripheral artery disease, we compared the exercise pressor reflex in rats with a functional knockout of the ASIC3 (KO) with the reflex in their wild-type counterparts (WT). We found that the exercise pressor reflex in ASIC3 KO rats was significantly lower than the exercise pressor reflex in their WT counterparts (P < 0.05). ASIC 3 KO rats demonstrated lower pressor responses to intra‐arterial injection of diprotonated phosphate (86 mM; pH 6.0), lactic acid (12 mM; pH 2.85), and capsaicin (0.2 μg; pH 7.2) (P < 0.05). In contrast, both ligated WT and ASIC3 KO rats displayed similar pressor responses to tendon stretch (P > 0.05). We conclude that ASIC3 play an important role in evoking the exaggerated exercise pressor reflex in rats with peripheral artery disease.NEW & NOTEWORTHY We used a genetic approach to test the hypothesis that the magnitude of the exercise pressor reflex evoked in ligated ASIC3 KO rats was significantly lower than the magnitude of the exercise pressor reflex evoked in their ligated wild-type (WT) counterparts. The pressor response to contraction in ligated ASIC3 KO rats was significantly smaller than was the pressor response to contraction in ligated WT rats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call