Abstract
Classical support vector machine (SVM) and its twin variant twin support vector machine (TWSVM) utilize the Hinge loss that shows linear behaviour, whereas the least squares version of SVM (LSSVM) and twin least squares support vector machine (LSTSVM) uses L2-norm of error which shows quadratic growth. The robust Huber loss function is considered as the generalization of Hinge loss and L2-norm loss that behaves like the quadratic L2-norm loss for closer error points and the linear Hinge loss after a specified distance. Three functional iterative approaches based on generalized Huber loss function are proposed in this paper to solve support vector classification problems of which one is based on SVM, i.e. generalized Huber support vector machine and the other two are in the spirit of TWSVM, namely generalized Huber twin support vector machine and regularization on generalized Huber twin support vector machine. The proposed approaches iteratively find the solutions and eliminate the requirements to solve any quadratic programming problem (QPP) as for SVM and TWSVM. The main advantages of the proposed approach are: firstly, utilize the robust Huber loss function for better generalization and for lesser sensitivity towards noise and outliers as compared to quadratic loss; secondly, it uses functional iterative scheme to find the solution that eliminates the need to solving QPP and also makes the proposed approaches faster. The efficacy of the proposed approach is established by performing numerical experiments on several real-world datasets and comparing the result with related methods, viz. SVM, TWSVM, LSSVM and LSTSVM. The classification results are convincing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.