Abstract

Fast charging is of enormous concerns in the development of power batteries, while the low conductivity and lithium ion transference number in current electrolytes degraded the charge balance, limited the rate performance, and even cause safety issues for dendrite growth. Combine inorganic fillers and ionic liquid plasticizer, here in this paper we prepared a core-shell structured nanofibrous membrane, by incorporating with carbonate based electrolyte, a gel polymer electrolyte (GPE) with high conductivity, outstanding Li+ transference number was obtained. Notably, the Li/electrolyte/LiNi0.6Co0.2Mn0.2O2 (NCM622) half-cell with this composite electrolyte delivers a reversible capacity of 65 mAh/g at 20C, which is 13 times higher than that of with Celgard 2325 membrane. It also shows enhanced long-term cycle stability at both 3C and 5C for the suppression of lithium dendrite. This organic-inorganic co-modified GPE guarantees the fast charging ability and safety of LIBs, thus provides a promising method in high performance electrolyte design.

Highlights

  • With the increasing demand for energy consumption and the continuous improvement for environmental protection, the development of sustainable and renewable energy is urgently needed currently

  • The energy dispersive X-ray spectroscopy (EDS) data shown in Figure S1 gives the elemental distribution in PHL and PHP@PHL complex films

  • The enhanced performance of PHP@PHL can be attributed to several reasons, firstly, the nanofibrous structure of PVDF-HFP balanced the Li+ flux and suppressed the mossy deposition of Li; secondly, the synergistic effect of LSO and propylpiperidinium chloride (PPCl) reduce the crystallinity of the polymer matrix, enhanced the Li+ transportation efficiency; lastly, Cl anion from the IL may partly be involved in the formation of SEI, which further enhance the cycle stability of the symmetric cell

Read more

Summary

Introduction

With the increasing demand for energy consumption and the continuous improvement for environmental protection, the development of sustainable and renewable energy is urgently needed currently. According to DSC test results of four separators, membranes based on PVDF-HFP shows better thermal stability than that of Celgard 2325, and the core-shell structured PHP@PHL, released the least heat even on melting (Figure 1E) (Kang et al, 2016; Wang et al, 2019).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call