Abstract

Visual hallucinations (VHs) represent a frequent and disturbing complication of Parkinson's disease. Evidence suggests that VH can be related to central cholinergic dysfunction. Short-latency afferent inhibition (SAI) technique gives the opportunity to test an inhibitory cholinergic circuit in the human cerebral motor cortex. This inhibition of motor-evoked potentials can be observed when transcranial magnetic stimulation is delivered with a delay ranging from 2 to 8 ms, after a peripheral nerve afferent input has reached the somatosensory cortex. We applied SAI technique in 10 non-demented patients with Parkinson's disease with VHs, in 12 non-demented patients with Parkinson's disease without VHs (NVH-pts) and in 11 age-matched normal controls. All patients with Parkinson's disease underwent a battery of neuropsychological tests to assess frontal and visuospatial functions, memory and attention. SAI was significantly reduced in patients with VHs compared with controls and patients without VHs. Neuropsychological examination showed a mild cognitive impairment in 16 out of 22 patients with Parkinson's disease. In addition, we found that in our patients with VHs, performance of some tasks evaluating visuospatial functions and attentional/frontal lobe functions was significantly more impaired than in patients without VHs. SAI abnormalities, presence of VH and neuropsychological results strongly support the hypothesis of cholinergic dysfunction in some patients with Parkinson's disease, who will probably develop a dementia. A follow-up study of our patients is required to verify whether SAI abnormalities can predict a future severe cognitive decline. Moreover, SAI can also be very useful to follow-up the efficacy of anti-cholinesterase therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.