Abstract

The functional processes and mutual benefits of the wild plant Moringa oleifera and its rhizosphere microbiome were studied via metagenomic whole-genome shotgun sequencing (mWGS) in comparison with a bulk soil microbiome. The results indicated high gene abundance of the four KEGG categories, “Cellular Processes”, “Environmental Information Processing”, “Genetic Information Processing”, and “Metabolism”, in the rhizosphere microbiome. Most of the enriched enzymes in rhizobacteria are assigned to the pathway “Amino acids metabolism”, where soil-dwelling microbes use amino acids as a defense mechanism against phytopathogens, while promoting growth, colonizing the cohabiting commensal microbes and conferring tolerance against abiotic stresses. In the present study, it was proven that these beneficial microbes include Bacillus subtilis, Pseudomonas fluorescens, and Escherichia coli. Mineral solubilization in these rhizobacteria can make nutrients available for plant utilization. These rhizobacteria extensively synthesize and metabolize amino acids at a high rate, which makes nitrogen available in different forms for plants and microbes. Amino acids in the rhizosphere might stand mainly as an intermediate switcher for the direction of the soil nitrogen cycle. Indole acetic acid (IAA) was proven to be synthesized by these beneficial rhizobacteria via route indole-3-pyruvate (IPyA) of the pathway “Tryptophan metabolism”. This hormone might stand as a shuttle signaling molecule between M. oleifera and its rhizobacteria. Tryptophan is also metabolized to promote other processes with important industrial applications. Rhizobacteria were also proven to breakdown starch and sucrose into glucose, which is the primary metabolic fuel of living organisms. In conclusion, we assume that the metabolic processes in the rhizosphere microbiome of this wild plant can be eventually utilized in boosting the sustainability of agriculture applications and the plant’s ability to benefit from soil nutrients when they are not in the form available for plant root absorption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call