Abstract

Recently it has been discovered that a number of eukaryotic viruses, including HIV, coopt the cellular Endosomal Sorting Complex Required for Transport (ESCRT) machinery to affect egress from infected cells. Strikingly, the ESCRT apparatus is conserved in a subset of Archaea, including members of the genus Sulfolobus where it plays a role in cytokinesis. In the current work, we reveal that the archaeal virus Sulfolobus turreted icosahedral virus isolated from Yellowstone National Park's acidic hot springs also exploits the host ESCRT machinery in its replication cycle. Moreover, perturbation of normal ESCRT function abrogates viral replication and, thus, prevents establishment of a productive Sulfolobus turreted icosahedral virus infection. We propose that the Sulfolobus ESCRT machinery is involved in viral assembly within the cytoplasm and in escape from the infected cell by using a unique lysis mechanism. Our results support an ancient origin for viruses "hijacking" ESCRT proteins to complete their replication cycle and thus identify a critical host-virus interaction conserved between two domains of life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call