Abstract

Addition of N6-methyladenosine (m6A), the most prevalent internal mRNA modification in eukaryotes, is catalyzed by an evolutionarily conserved m6A methyltransferase complex. In the model plant Arabidopsis thaliana, the m6A methyltransferase complex is composed of 2 core methyltransferases, mRNA adenosine methylase (MTA) and MTB, and several accessory subunits such as FK506-BINDING PROTEIN 12 KD INTERACTING PROTEIN 37KD (FIP37), VIRILIZER (VIR), and HAKAI. It is yet largely unknown whether these accessory subunits influence the functions of MTA and MTB. Herein, I reveal that FIP37 and VIR are indispensable for stabilizing the methyltransferases MTA and MTB, thus functioning as key subunits to maintain the functionality of the m6A methyltransferase complex. Furthermore, VIR affects FIP37 and HAKAI protein accumulation, while MTA and MTB mutually influence each other. In contrast, HAKAI has little effect on protein abundance or localization of MTA, MTB, and FIP37. These findings uncover unique functional interdependence at the post-translational level among individual components in the Arabidopsis m6A methyltransferase complex, suggesting that maintenance of protein homeostasis among various subunits of the m6A methyltransferase complex is essential for maintaining the protein stoichiometry required for the proper function of the m6A methyltransferase complex in m6A deposition in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call