Abstract
cis,trans-Abscisic acid (ABA) plays an important role in plant growth and development, regulation of seed maturation, germination, and adaptation to environmental stresses. Knowledge of ABA mechanisms of action and the interactions of components required for ABA signal transduction is far from complete. Using transient gene expression in rice protoplasts, we observed additive and inhibitory effects between maize VP1 (Viviparous-1, a transcriptional activator) and a dominant-negative mutant protein phosphatase, ABI1-1 (ABA-insensitive-1-1), from Arabidopsis. Lanthanide ions were shown to be specific agonists of ABA-inducible gene expression and to interact synergistically with ABA and overexpressed VP1. Both VP1 and lanthanum activities could be antagonized by coexpression of ABI1-1, which demonstrates the specific ABA dependence of these effectors on ABA-regulated gene expression. We obtained pharmacological evidence that phospholipase D (PLD) functions in ABA-inducible gene expression in rice. Antagonism of ABA, VP1, and lanthanum synergy by 1-butanol, a specific inhibitor of PLD, was similar to the inhibition by coexpression of ABI1-1. These results demonstrate that ABA, VP1, lanthanum, PLD, and ABI1 are all involved in ABA-regulated gene expression and are consistent with an integrated model whereby La(3+) acts upstream of PLD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.