Abstract

The Gq-coupled oxytocin receptor (OTR) and the Gs-coupled β2-adrenergic receptor (β2AR) are both expressed in myometrial cells and mediate uterine contraction and relaxation, respectively. The two receptors represent important pharmacological targets as OTR antagonists and β2AR agonists are used to control pre-term uterine contractions. Despite their physiologically antagonistic effects, both receptors activate the MAP kinases ERK1/2, which has been implicated in uterine contraction and the onset of labor. To determine the signalling pathways involved in mediating the ERK1/2 response, we assessed the effect of blockers of specific G protein-associated pathways. In human myometrial hTERT-C3 cells, inhibition of Gαi as well as inhibition of the Gαq/PKC pathway led to a reduction of both OTR- and β2AR-mediated ERK1/2 activation. The involvement of Gαq/PKC in β2AR-mediated ERK1/2 induction was unexpected. To test whether the emergence of this novel signalling mechanism was dependent on OTR expression in the same cell, we conducted experiments in HEK 293 cells that were transfected with the β2AR alone or co-transfected with the OTR. Using this approach, we found that β2AR-mediated ERK1/2 responses became sensitive to PKC inhibition only in cells co-transfected with the OTR. Inhibitor studies indicated the involvement of an atypical PKC isoform in this process. We confirmed the specific involvement of PKCζ in this pathway by assessing PKCζ translocation to the cell membrane. Consistent with our inhibitor studies, we found that β2AR-mediated PKCζ translocation was dependent on co-expression of OTR. The present demonstration of a novel β2AR-coupled signalling pathway that is dependent on OTR co-expression is suggestive of a molecular interaction between the two receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.