Abstract

Protein kinase CK2 (formerly casein kinase II) is frequently upregulated in human cancers, and transgenic expression of CK2alpha in lymphocytes is oncogenic. Lymphomagenesis is dramatically accelerated by co-expression of a c-myc transgene, suggestive of a synergistic interaction between the kinase and the transcription factor. Since c-myc can be phosphorylated by CK2, we hypothesized that the synergy between CK2 and c-myc might be due to a functional interaction of the two molecules. Pharmacologic inhibition of CK2 activity in cell lines established from CK2alpha transgenic T cell lymphomas reduces their proliferation and concomitantly with this, the steady state levels of c-myc protein decline. This is caused by accelerated c-myc protein turnover, which occurs in a proteasome-dependent manner. Transfection of cells with sense or anti-sense CK2 constructs modulates c-myc protein levels in concert with the alteration in CK2 activity, validating the findings obtained using the kinase inhibitors. Thus, CK2 is a critical regulator of c-myc protein stability and of the proliferation of these T cell lymphomas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.