Abstract

Two Epstein-Barr virus (EBV) latent cycle promoters, Wp and Cp, are activated sequentially during virus-induced transformation of primary B lymphocytes. Immediately postinfection, viral transcription initiates from Wp, leading to expression of EBV nuclear antigen 2 (EBNA2) and EBNA5. Within 36 h, there is a switch in promoter usage from Wp to the upstream Cp, which leads to expression of EBNA1 to EBNA6. EBNA2 appears to be required for the Wp-to-Cp switch, but the switching mechanism is not fully understood at the molecular level. In a previous investigation we showed that there is an EBNA2-independent activity of reporter constructs containing deletion fragments of Cp in B-lymphoid cell lines, and we demonstrated that Cp activity is highly dependent on several cellular transcription factors, including nuclear factor Y (NF-Y) and Sp1. In the present work, we analyzed the effect of NF-Y on Cp activity in greater detail. We demonstrate that (i) a dominant negative analogue of NF-Y abolishes Cp activity, (ii) NF-Y and Sp1 costimulate Cp, and (iii) the oriPI-EBNA1-induced transactivation of Cp requires concomitant expression of NF-Y and Sp1, although additional factors seem necessary for optimal activation. Furthermore, using the lymphoblastoid cell line EREB2-5, in which EBNA2 function is regulated by estrogen, we demonstrate that inactivation of EBNA2 results in decreased expression of NF-Y and down-regulation of Cp. On reconstitution of the EBNA2 function, the cells enter the cell cycle, NF-Y levels increase, and a concomitant Wp-to-Cp switch occurs. Taken together, our results suggest that NF-Y is essential for Cp activation and that up-regulation of NF-Y may contribute to a successful Wp-to-Cp switch during B-cell transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call