Abstract
Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.
Highlights
Transcription of protein-coding genes is mediated by RNA polymerase II (RNA Pol II) whose processivity is tightly controlled by the positive transcription elongation factor b (P-TEFb) after transcriptional initiation [1,2]
Since no deficiency stock exists in Hexim region, we addressed the function of HEXIM during development using RNAi-mediated gene knockdown coupled to the UAS-Gal4 enhancer trap system [59], in the proliferative and differentiating regions of imaginal discs
Apart from the developmental function of HEXIM that we address in this work and the connection between HEXIM and Hedgehog signaling, our results may be of interest for human health studies
Summary
Transcription of protein-coding genes is mediated by RNA polymerase II (RNA Pol II) whose processivity is tightly controlled by the positive transcription elongation factor b (P-TEFb) after transcriptional initiation [1,2]. This kinase promotes productive transcription elongation by catalyzing the phosphorylation of a number of regulatory factors, namely the Negative elongation factor (NELF), the DRB-sensitivity inducing factor (DSIF), as well as the C-terminal domain (CTD) of RNA Pol II [3]. Genetic Interaction between HEXIM and Hh. In human cells, P-TEFb forms two alternative complexes, which differ in size, components, and enzymatic activity [2,4]. HEXIM target genes are not known, many lines of evidence strongly support a connection between developmental pathways or diseases and the control of transcription by HEXIM [10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.