Abstract

The functional integrity of the inferior vestibular nerve (IVN) may be evaluated by the cervical vestibular evoked myogenic potential (cVEMP) response, which requires signal transmission via the nerve. As functional integrity of the IVN innervating the posterior semicircular canal is required to produce the typical positioning vertigo and nystagmus characterizing posterior canal benign paroxysmal positional vertigo (PCBPPV), we hypothesized that normal cVEMPs would be found in most PCBPPV patients. Twenty-four PCBPPV patients participated in a prospective cohort study. All were treated by canal repositioning maneuver and had air-conduction cVEMP and videonystagmography (VNG). Follow-up evaluations including history and otoneurological bedside examination were carried out 1, 3, 6, and 12 months after the initial treatment. At the last follow-up, the patients filled the Dizziness Handicap Inventory (DHI) questionnaire. Normal cVEMPs were recorded in 19 (79%) and were absent in 5 (21%) of the subjects. The average DHI in the patients with normal cVEMP was 16.42 ± 17.99 vs. 0.4 ± 0.89 among those with pathological cVEMP (p < 0.04, Mann–Whitney test). Thirteen (54%) patients experienced recurrent PCBPPV (rPCBPPV). The average DHI score was significantly higher among patients having recurrence (22.15 ± 18.61) when compared to those with complete cure (2.36 ± 5.98; p < 0.003, Mann–Whitney test). Ten (77%) of the subjects with rPCBPPV had normal and 3 (23%) had pathological cVEMP as compared to 9 (82%) and 2 (18%) subjects in the non-recurrent (nrPCBPPV) group (Fisher's exact test—not significant). cVEMP p13 and n23 wave latencies and amplitudes, inter-aural differences in p13-n23 peak-to-peak amplitudes, and response thresholds did not differ between the groups. No differences were found between the rPCBBPV and nrPCBBPV groups in VNG caloric lateralization and directional preponderance values. We have found that in most cases, PCBPPV symptoms and signs are associated with normal cVEMP response supporting the role of IVN functional integrity. The absent cVEMPs in the minority of patients, although having similar clinical presentation, raise the possibility that the ipsilateral saccule is affected by the same pathology causing degeneration of the utricle macula. Alternatively, lacking inhibitory stimuli from the involved ipsilateral utricle or partial degeneration of the IVN and ganglion could explain the diminished cVEMP response.Clinical Trial Registration: The study was registered in ClinicalTrials.gov Internet site (study ID—NCT01004913; https://clinicaltrials.gov/ct2/show/NCT01004913?cond=BPPV&cntry=IL&draw=2&rank=3).

Highlights

  • Benign paroxysmal positional vertigo (BPPV) is the most common peripheral cause of vertigo

  • Current understanding of posterior semicircular canal benign paroxysmal positional vertigo (PCBPPV) pathogenesis involves the dislodgement of otoconial debris detached from the utricle into the posterior semicircular canal (PSCC)

  • As the cervical vestibular evoked myogenic potentials (cVEMPs) response of the sacculo-collic reflex depends on the spreading of neural signals via the inferior vestibular nerve, it has been suggested that cVEMPs would be preserved in patients having the clinical presentation of PCBPPV [8]

Read more

Summary

Introduction

Benign paroxysmal positional vertigo (BPPV) is the most common peripheral cause of vertigo. Current understanding of posterior semicircular canal benign paroxysmal positional vertigo (PCBPPV) pathogenesis involves the dislodgement of otoconial debris detached from the utricle into the posterior semicircular canal (PSCC). The cVEMP pathway is believed to originate in the saccular macula and continues through the ipsilateral inferior vestibular nerve and ganglion, vestibular nucleus, ipsilateral vestibulospinal tracts, spinal motor nucleus, and the sternocleidomastoid muscle. This sacculo-collic reflex is characterized by biphasic waves with initial positivity (p13) followed by a negative wave (n23) [6, 7]. As the cVEMP response of the sacculo-collic reflex depends on the spreading of neural signals via the inferior vestibular nerve, it has been suggested that cVEMPs would be preserved in patients having the clinical presentation of PCBPPV [8]

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call