Abstract

We prove theorems on the exact asymptotic forms as u → ∞ of two functional integrals over the Bogoliubov measure μB of the forms $$\int_{C[0,\beta ]} {[\int_0^\beta {|x(t){|^p}dt{]^u}d{\mu _B}(x)} } ,\;\int_{C(0,\beta )} {\exp \left\{ {\mu {{(\int_0^\beta {|x(t){|^p}dt} )}^{a/p}}} \right\}d{\mu _B}(x)} $$ for p = 4, 6, 8, 10 with p > p0, where p0 = 2+4π2/β2ω2 is the threshold value, β is the inverse temperature, ω is the eigenfrequency of the harmonic oscillator, and 0 < α < 2. As the method of study, we use the Laplace method in Hilbert functional spaces for distributions of almost surely continuous Gaussian processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.