Abstract

By means of functional integrations spectral properties of semi-relativistic Pauli–Fierz HamiltoniansH=(p−αA)2+m2−m+V+Hrad in quantum electrodynamics are considered. Here p is the momentum operator, A a quantized radiation field on which an ultraviolet cutoff is imposed, V an external potential, Hrad the free field Hamiltonian and m⩾0 describes the mass of electron. Two self-adjoint extensions of a semi-relativistic Pauli–Fierz Hamiltonian are defined. The Feynman–Kac type formula of e−tH is given. A self-adjointness, a spatial decay of bound states, a Gaussian domination of the ground state and the existence of a measure associated with the ground state are shown. All the results are independent of values of coupling constant α, and it is emphasized that m=0 is included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.