Abstract
Thearticle highlights omics-based interventions in sorghum to combat food and nutritional scarcity in the future. Sorghum with its unique ability to thrive in adverse conditions, has become a tremendous highly nutritive, and multipurpose cereal crop. It is resistant to various types of climatic stressors which will pave its way to a future food crop. Multi-omics refers to the comprehensive study of an organism at multiple molecular levels, including genomics, transcriptomics, proteomics, and metabolomics. Genomic studies have provided insights into the genetic diversity of sorghum and led to the development of genetically improved sorghum. Transcriptomics involves analysing the gene expression patterns in sorghum under various conditions. This knowledge is vital for developing crop varieties with enhanced stress tolerance. Proteomics enables the identification and quantification of the proteins present in sorghum. This approach helps in understanding the functional roles of specific proteins in response to stress and provides insights into metabolic pathways that contribute to resilience and grain production. Metabolomics studies the small molecules, or metabolites, produced by sorghum, provides information about the metabolic pathways that are activated or modified in response to environmental stress. This knowledge can be used to engineer sorghum varieties with improved metabolic efficiency, ultimately leading to better crop yields. In this review, we have focused on various multi-omics approaches, gene expression analysis, and different pathways for the improvement of Sorghum. Applying omics approaches to sorghum research allows for a holistic understanding of its genome function. This knowledge is invaluable for addressing challenges such as climate change, resource limitations, and the need for sustainable agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.