Abstract

In this paper, our aim is to show some mean value inequalities for the modified Bessel functions of the first and second kind. Our proofs are based on some bounds for the logarithmic derivatives of these functions, which are in fact equivalent to the corresponding Turán-type inequalities for these functions. As an application of the results concerning the modified Bessel function of the second kind, we prove that the cumulative distribution function of the gamma–gamma distribution is log-concave. At the end of this paper, several open problems are posed, which may be of interest for further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.