Abstract
Receptor guanylyl cyclases possess an extracellular ligand-binding domain, a single transmembrane region, a region with sequence similar to that of protein kinases, and a C-terminal guanylyl cyclase domain. ATP regulates the activity of guanylyl cyclase C (GC-C), the receptor for the guanylin and stable toxin family of peptides, presumably as a result of binding to the kinase homology domain (KHD). Modeling of the KHD of GC-C indicated that it could adopt a structure similar to that of tyrosine kinases, and sequence comparison with other protein kinases suggested that lysine(516) was positioned in the KHD to interact with ATP. A monoclonal antibody GCC:4D7, raised to the KHD of GC-C, did not recognize ATP-bound GC-C, and its epitope mapped to a region in the KHD of residues 491--568 of GC-C. Mutation of lysine(516) to an alanine in full-length GC-C (GC-C(K516A)) dramatically reduced the ligand-stimulated activity of mutant GC-C, altered the ATP-mediated effects observed with wild-type GC-C, and failed to react with the GCC:4D7 monoclonal antibody. ATP interaction with wild-type GC-C converted a high-molecular weight oligomer of GC-C to a smaller sized oligomer. In contrast, GC-C(K516A) did not exhibit an alteration in its oligomeric status on incubation with ATP. We therefore suggest that the KHD in receptor guanylyl cyclases provides a critical structural link between the extracellular domain and the catalytic domain in regulation of activity in this family of receptors, and the presence of K(516) is critical for the possible proper orientation of ATP in this domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.